The Floridan Aquifer System Fundamentals, Monitoring, and Conceptual Plan to Conduct Further Evaluation Presented by **Peter J. Kwiatkowski, P.G., Director** Resource Evaluation Division Intergovernmental Programs Department September 8, 2010 ## Floridan Aquifer Demands (2000) the Floridan Aquifer System supports almost 10 million people as their primary source of water ... (Marella and Berndt, 2005) (USGS Circular 1278) # Geographic Differences of Floridan Aquifer System - Recharge Area in Central Florida - Confined Aquifer in South Florida - (-) less water released from storage, greater drawdowns - (+) less problem with impacts to wetlands or surface-water bodies ## Hydrostratigraphic Chart in SFWMD | | | | | | 0000 | |---|-----------------------------|---|---|---|------------------------------------| | Geologic
unit | | Lithology | Hydrogeologic unit | | Approximate
thickness
(feet) | | Undifferentiated
and various
Pleistocene-aged
formations | | Quartz sand; silt; clay; shell;
limestone; sandy shelly limestone | SYSTEM | WATER-TABLE /
BISCAYNE AQUIFER | | | TAMIAMI
FORMATION | | Silt; sandy clay; sandy, shelly
limestone; calcareous sand-
stone; and quartz sand | SURFICIAL
AQUIFER SYSTEM | CONFINING BEDS
LOWER TAMIAMI
AQUIFER | 20-400 | | HAWTHORN GROUP | PEACE
RIVER
FORMATION | Interbedded sand, silt,
gravel, clay, carbonate,
and phosphatic sand | INTERMEDIATE AQUIFER
SYSTEM OR
CONFINING UNIT | CONFINING UNIT SANDSTONE AQUIFER OR PZ1(?) CONFINING UNIT | 0-900 | | | ARCADIA
FORMATION | Sandy micritic limestone;
marlstone; shell beds;
dolomite; phosphatic sand
and carbonate; sand; silt; | INTERMED
SYS
CONFI | MID-HAWTHORN
AQUIFER OR
PZ2
CONFINING UNIT | | | | BASAL
HAWTHORN
UNIT | and clay | | LOWER HAWTHORN PZ3 | 0-300 | | SUWANNEE
LIMESTONE | | Fossiliferous, calcarenitic
limestone | SYSTEM | UPPER
FLORIDAN
AQUIFER | 100-800 | | OCALA
LIMESTONE | | Chalky to fossiliferous, mud-rich to calcarenitic limestone | AQUIFER | (UF) | | | AVON PARK
FORMATION | | Fine-grained, micritic to
fossiliferous limestone;
dolomitic limestone; and
dolostone. Also contains in
the lower part anhydrite/ | | MIDDLE CONFINING UNIT (MC1) APPZ MIDDLE CONFINING UNIT (MC2) | 0-600 | | ??
OLDSMAR
FORMATION | | gypsum as bedded deposits,
or more commonly as pore
filling material. Glauconitic
limestone near top of Oldsmar
Formation in some areas | FLORIDAN | LOWER FLORIDAN AQUIFER BZ | 0-1,800
0-700 | | CEDAR KEYS
FORMATION | | Dolomite and dolomitic limestone | | | | | | | Massive anhydrite beds | | SUB-FLORIDAN
Confining Unit | 1,200? | ### Vertical Differences of Floridan Aquifer System: #### Geographic Differences in Transmissivity within the FAS #### **Uppermost Producing Zone** #### Avon Park Producing Zone #### Geographic Differences in Salinity within the FAS ### Changing Water-levels due to Long-term Withdrawals Pre-Development #### Floridan Water-Level Monitor Network ## Floridan Water Quality Monitor Network - Focus on brackish wells - Annual sampling for specific conductance & field parameters - Determine if there are regional changes in water quality # Floridan Wellfield Water Quality PBCWUD Lake Region WTP ## **Key Points** - Top of Floridan Aquifer gets deeper from North to South - Upper zones of Floridan Aquifer are fresh in Central Florida, but get salty from North to South and with greater depth - Transmissivity (productivity) of FAS zones is variable - Few wells in the Lower Floridan Aquifer, yet this is a good future Alternative Water Supply source - Relatively stable water quality seasonally, but geographically variable - Some pumping wells become saltier (upconing of more saline water from below or laterally along coast) ## Lower Floridan Aquifer as an **Alternative Water Supply Source** Generalized Cross-section down the Kissimmee Valley #### Strategy: Install and test new LFA wells to determine: - Degree of connection to overlying aguifers - Evaluate multiple layers in LFA - Range of productivity and water quality - Spatial extent - Sustainability ## 5-Year Plan Lower Floridan Aquifer, CFCA #### Lower Floridan Aquifer Investigation, UKB | Site | FY2011 | FY2012 | FY2013 | FY2014 | FY2015 | Subtotal | |----------|--------------|----------------|-------------|-------------|-----------|-------------| | | | | | | | | | Α | | | \$1,715,000 | \$897,950 | \$30,000 | \$2,642,950 | | В | \$172,0 | 00 \$1,024,000 | \$715,750 | \$15,000 | | \$1,926,750 | | С | \$222,0 | 00 \$577,000 | \$10,000 | | | \$809,000 | | D | \$974,0 | 00 \$658,000 | \$65,000 | \$20,000 | \$20,000 | \$1,737,000 | | E | \$400,0 | 00 \$400,000 | \$30,000 | | | \$830,000 | | Subtot | al \$1,768,0 | 00 \$2,659,000 | \$2,535,750 | \$932,950 | \$50,000 | \$7,945,700 | | FTEs | 1 | 1.8 2.2 | 2 2.2 | 2.0 | 1.0 | 9.2 | | FTEs (\$ | \$180,0 | 00 \$220,000 | \$220,000 | \$200,000 | \$100,000 | \$920,000 | | Total | \$1,948,0 | 00 \$2,879,000 | \$2,755,750 | \$1,132,950 | \$150,000 | \$8,865,700 | | | | | | | | | Install and test wells at five sites (Sites A, B, C, D, and E) in CFCA to evaluate multiple zones above and into the Lower Floridan Aquifer as an alternative water supply source ## Conclusions - Floridan Aquifer System (FAS) will be relied upon to a greater degree to meet future water demands in SFWMD - Deeper zones within the FAS have less data but are the most likely to be relied upon to meet these future demands due to poorer water quality and lower hydraulic connection to stressed aquifers and natural systems - Additional wells and long-term monitoring are necessary in these deeper zones of the FAS to provide data for evaluation of water supply potential and calibrate models to manage the resource - Cooperative agreements and collaborative efforts with other districts, utilities, and agriculture are essential to leverage limited financial resources